Technology, Commercialization, Opportunity, Market and Players: IDTechEx


1. EXECUTIVE SUMMARY 1.1. What is the report about and who should read it 1.2. Existing large mini-/micro-LED display announcements 1.3. Expectation of future displays 1.4. Status of OLED 1.5. Strategies of QDs in display 1.6. Characteristic comparison of different display technologies 1.7. Horizontal comparison 1.8. Why Micro-LED Displays? 1.9. Micro-LED value propositions compared with LCD, OLED, QD 1.10. Importance of identifying core value propositions 1.11. Core value propositions of µLED displays 1 1.12. Core value propositions of µLED displays 2 1.13. Core value propositions of µLED displays 3 1.14. Core value propositions of µLED displays 4 1.15. Core value propositions of µLED displays 5 1.16. Analysis of micro-LED’s value propositions 1.17. Influence of resolution for applications 1.18. Micro-LED display types 1.19. Potential applications for micro-LED displays 1.20. Matrix analysis 1.21. Display requirements for XR applications 1.22. Application analysis: Augmented/mixed reality 1.23. Application analysis: Virtual reality 1.24. Application analysis: Large video displays 1.25. Application analysis: Televisions and monitors 1.26. Application analysis: Automotive displays 1.27. Application analysis: Mobile phones 1.28. Application analysis: Smart watches and wearables 1.29. Application analysis: Tablets and laptop 1.30. Emerging displays enabled by micro-LED technology 1.31. Micro-LED display development stage 1.32. Micro-LED application roadmap 1.33. Micro-LED display fabrication flowchart 1.34. Technologies of micro-LED displays 1.35. Complex micro-LED display design 1.36. Challenge transition for micro-display manufacturing 1.37. Current achievements of micro-LED displays 1.38. Summary of challenges for micro-LED displays 1.39. Issues with RGB micro-LED chips 1.40. Micro-LED performance summary 1.41. Full colour realization 1.42. Quantum dots for µLEDs 1.43. Regional development: Taiwan 1.44. Regional development: Mainland China 1.45. Regional development: Japan & Korea 1.46. Regional development: Europe 1.47. Regional development: US 1.48. Supply chain status 1.49. Supply chain reshuffle 1.50. Possible supply chain for micro-LED displays 1.51. Scenarios of supply chain dominance 1.52. Supply chain influenced by trade war and coronavirus 2. INTRODUCTION TO MICRO-LED DISPLAY 2.1. From traditional LEDs… 2.2. …to Micro-LEDs 2.3. Comparisons of LEDs for displays 2.4. Mini-LEDs and Micro-LEDs 2.5. Correlations between mini-LED, micro-LED and fine pitch LED displays 2.6. From traditional LEDs to micro-LED 2.7. Display types based on micro-LEDs 2.8. Advantages of AM micro-LED micro-displays 2.9. LED size definitions 2.10. Micro-LED displays: size is an important feature 2.11. Micro LED displays: beyond the size 2.12. A better definition? 2.13. Micro-LED display panel structure 3. EPITAXY AND CHIP MANUFACTURING 3.1. Introduction to light-emitting diodes 3.1.1. History of solid-state lighting 3.1.2. What is an LED? 3.1.3. How does an LED work? 3.1.4. Homojunction vs. heterojunction 3.1.5. LEDs by package technique 1 3.1.6. LEDs by package technique 2 3.1.7. Typical LED and packaged LED sizes 3.1.8. Comparison between SMD and COB 3.1.9. COB for displays 3.1.10. List of global major LED companies with introduction 3.2. Epitaxy 3.2.1. Bandgap vs. lattice constant for III-V semiconductors 3.2.2. Materials for commercial LED chips 1 3.2.3. Materials for commercial LED chips 2 3.2.4. Green gap 3.2.5. Epitaxy substrate 3.2.6. Wafer patterning 1 3.2.7. Wafer patterning 2 3.2.8. Wafer patterning 3 3.2.9. Epitaxy methods 3.2.10. Metal organic chemical vapor deposition 3.2.11. Pros and cons of MOCVD 3.2.12. Epitaxial growth requirement 3.2.13. Offering from Aixtron and Veeco 3.2.14. Veeco’s offering 3.2.15. Engineered substrate 3.2.16. Wafer uniformity 1 3.2.17. Wavelength uniformity 2 3.2.18. Solutions for wafer nonuniformity 3.3. Chip manufacturing 3.3.1. LED fabrication flowchart 3.3.2. Typical RGB LED designs 3.3.3. LED chip structures 1 3.3.4. LED chip structures 2 3.3.5. LED chip structure illustrations 3.3.6. Future of the LED chip structure 3.3.7. Epi-film transfer 3.3.8. Fabrication of vertical GaN-LEDs 3.4. Micro-LED Performances 3.4.1. Influence of micro-LED performance 3.4.2. EQE of micro-LED versus current density 1 3.4.3. EQE of micro-LED versus current density 2 3.4.4. Efficiency droop 3.4.5. Temperature stability 3.4.6. Bowing of wavelength shift 3.4.7. Size dependence of micro-LEDs 1 3.4.8. Size dependence of micro-LEDs 2 3.4.9. Size dependence of micro-LEDs 3 3.4.10. Size dependence of micro-LEDs 4 3.4.11. Efficiencies and requirement of RGB micro-LEDs 3.4.12. Surface recombination 3.4.13. Sidewall effect 3.4.14. Side wall passivation 3.4.15. Efficiency improvement 4. TRANSFER AND ASSEMBLY 4.1.1. Introduction 4.1.2. Mass transfer and assembly technologies 4.1.3. Requirements of mass transfer 4.1.4. Chiplet mass transfer types 4.2. Chiplet Mass Transfer 4.2.1. Introduction to chiplet mass assembly 4.2.2. Chiplet mass transfer scenario 1 4.2.3. Chiplet mass transfer scenario 2 4.2.4. Comparison of mass transfer technologies 4.2.5. Comparison of transfer technologies of different companies 4.2.6. Transfer yield 4.2.7. Fine pick and place 4.2.8. Overview of Elastomeric stamp 4.2.9. Transfer process flow 4.2.10. Elastomeric stamp: pros and cons 4.2.11. Stamp yield vs. defect density 4.2.12. Key technologies for micro-LED mass transfer 4.2.13. Substrate treatment 4.2.14. Kinetic control of the elastomeric stamp adhesion 4.2.15. Elastomeric stamp 4.2.16. Pitch size determination 4.2.17. X-Celeprint 4.2.18. µLED fabrication 4.2.19. µLEDs from sapphire substrate 4.2.20. Passive matrix displays made by micro-transfer printing 4.2.21. Passive matrix μLED display fabrication 1 4.2.22. Passive matrix μLED display fabrication 2 4.2.23. Active matrix displays made by micro-transfer printing 4.2.24. Active matrix μLED display fabrication 4.2.25. Automated micro-transfer printing machinery 4.2.26. Capillary-assisted transfer printing 4.2.27. Mikro Mesa: Transfer technology 4.2.28. Mikro Mesa: Transfer flowchart 1 4.2.29. Mikro Mesa: Transfer flowchart 2 4.2.30. Mikro Mesa: Transfer stamp 4.2.31. Mikro Mesa: Transfer design target 4.2.32. PlayNitride: Mass transfer for micro-LED chips 4.2.33. PlayNitride: Mass transfer flowchart 1 4.2.34. PlayNitride: Mass transfer flowchart 2 4.2.35. Visionox 1 4.2.36. Visionox 2 4.2.37. ITRI: Chip fabrication 4.2.38. ITRI’s mass transfer process 4.2.39. ITRI’s transfer module 4.2.40. Overview of electrostatic array 4.2.41. Electrostatic/electromagnetic transfer 4.2.42. Apple/LuxVue 1 4.2.43. Apple/LuxVue 2 4.2.44. VerLASE’s large area assembly platform 4.2.45. Interposer idea 4.2.46. Self assembly 4.2.47. introduction of fluidic-assembly 4.2.48. eLux: introduction 4.2.49. Fabrication of micro-LED chip array 4.2.50. eLux’s fluidic assembly 4.2.51. eLux’s display prototypes 4.2.52. eLux’s supply chain 4.2.53. eLux’s core patent technology 1 4.2.54. eLux’s core patent technology 2 4.2.55. eLux’s core patent technology 3 4.2.56. eLux’s core patent technology 4 4.2.57. eLux’s core patent technology 5 4.2.58. eLux’s core patent technology 6 4.2.59. Image quality comparison 4.2.60. SWOT analysis of eLux’s technology 4.2.61. Other fluidic assembly techniques 4.2.62. Fluidic assembly (physical): overview 4.2.63. Alien 4.2.64. Alien’s fluidic self assembly technology 4.2.65. Self-assembly based on shape/geometry matching 4.2.66. Shape-based self assembly 4.2.67. Fluidic assembly (electrophoretic): overview 4.2.68. Electrophoretic positioning of LEDs 4.2.69. PARC’s xerographic micro-assembly Printing 1 4.2.70. PARC’s xerographic micro-assembly Printing 2 4.2.71. Fluidic-assembly (surface energy): overview 4.2.72. Mechanism of surface-tension-driven fluidic assembly 4.2.73. Surface tension based fluidic assembly 1 4.2.74. Surface tension based fluidic assembly 2 4.2.75. Surface tension based fluidic assembly 3 4.2.76. Surface tension based fluidic assembly 4 4.2.77. Fluidic-assembly (magnetic): overview 4.2.78. Magnetically-assisted assembly 4.2.79. Fluidic-assembly (photoelectrochemical): overview 4.2.80. Photoelectrochemically driven fluidic-assembly 4.2.81. Fluidic-assembly (combination): overview 4.2.82. Chip mounting apparatus 4.2.83. Summary of fluidic assembly 4.2.84. SelfArray 4.2.85. Laser enabled transfer 4.2.86. Overview of laser enabled transfer 4.2.87. Laser beam requirement 4.2.88. Coherent UVtransfer 3in1 System 4.2.89. Uniqarta’s parallel laser-enabled transfer technology 1 4.2.90. Uniqarta’s parallel laser-enabled transfer technology 2 4.2.91. Uniqarta’s parallel laser-enabled transfer technology 3 4.2.92. Uniqarta’s parallel laser-enabled transfer technology 4 4.2.93. Uniqarta’s parallel laser-enabled transfer technology 5 4.2.94. QMAT’s beam-addressed release technology 4.2.95. Optovate’s technology 1 4.2.96. Optovate’s technology 2 4.2.97. Coherent’s approach 4.2.98. Toray’s offering 4.2.99. Visionox’s achievement 4.2.100. Other chiplet mass transfer techniques 4.2.101. Korean Institute of Machinery and Materials (KIMM) 1 4.2.102. Korean Institute of Machinery and Materials (KIMM) 2 4.2.103. VueReal’s cartridge printing technique 4.2.104. VueReal’s micro printer 4.2.105. Innovasonic’s technology 4.2.106. Rohinni’s technology 4.2.107. Two-step micro-transfer technology 1 4.2.108. Two-step micro-transfer technology 2 4.2.109. Two-step micro-transfer technology 3 4.2.110. Two-step micro-transfer technology 4 4.2.111. Micro-transfer using a stretchable film 4.2.112. Micro-pick-and-place 4.2.113. Photo-polymer mass transfer 4.3. Monolithic Hybrid Integration 4.3.1. Monolithic integration 4.3.2. Flip-chip hybrid integration 4.3.3. Wafer bonding process 4.3.4. Monolithic hybrid integration structure 4.3.5. Selective transfer by selective bonding-debonding 4.3.6. Pros and cons of monolithic hybrid integration 4.3.7. Players on monolithic hybrid integration 4.4. All-In-One Transfer 4.4.1. All-in-one CMOS driving 4.4.2. Pros and cons of all-in-one CMOS driving technique 4.5. Fully Monolithic Integration 4.5.1. Introduction of fully monolithic integration 4.5.2. JBD’s integration technology 4.5.3. Lumiode approach 4.5.4. Lumiode approach, process details 4.5.5. Temperature performance for the crystallization 4.5.6. Wafer from Lumiode 4.5.7. Ostendo’s approach 4.5.8. Ostendo’s QPI structure 4.6. GaN on Silicon 4.6.1. GaN-on-Si for various application markets 4.6.2. GaN on silicon epi types 4.6.3. Challenges of GaN-on-Silicon epitaxy 4.6.4. Value propositions of GaN-on-Si 1 4.6.5. Value propositions of GaN-on-Si 2 4.6.6. GaN on sapphire vs. on silicon 4.6.7. GaN-on-Si approach 4.6.8. Cost comparison: sapphire vs silicon 4.6.9. Is GaN-on-Si the ultimate option? 4.6.10. Players working on GaN micro-LEDs on silicon 4.7. Nanowires 4.7.1. Comparison between 2D and 3D micro-LEDs 4.7.2. GaN epitaxy on silicon substrate 4.7.3. Aledia process flow 4.7.4. Aledia’s nanowire technology 4.7.5. Front size device technology 4.7.6. Nanowires growth on silicon substrate 4.7.7. Size influence on nanowire’s efficiency 4.7.8. Native EL RGB nanowires 4.7.9. 3D technology for small-display applications 4.7.10. Micro-display enabled by nanowires and 3D integration 4.7.11. Future of nanowire approach 4.8. Bonding and interconnection 4.8.1. Classification 4.8.2. Summary 4.8.3. Wire bonding and flip chip bonding 4.8.4. ACF bonding 4.8.5. Interconnection by resin reflow 4.8.6. Microtube interconnections 4.8.7. Microtube fabrication 4.8.8. Transfer and interconnection process by microtubes 5. TESTING 5. TESTING 5.1. Testing techniques 5.1. Testing techniques 5.2. Challenges in inspection 5.2. Challenges in inspection 5.3. PL vs. EL testing 5.3. PL vs. EL testing 5.4. EL test by Tesoro Scientific 1 5.4. EL test by Tesoro Scientific 1 5.5. EL test by Tesoro Scientific 2 5.5. EL test by Tesoro Scientific 2 5.6. Camera-based microscopic imaging system 5.6. Camera-based microscopic imaging system 5.7. Inspection solution by Toray 1 5.7. Inspection solution by Toray 1 5.8. Inspection solution by Toray 2 5.8. Inspection solution by Toray 2 5.9. Instrument System’s solution 5.9. Instrument System’s solution 5.10. PL+AOI 5.10. PL+AOI 5.11. TTPCON’s solution 5.11. TTPCON’s solution 5.12. Cathodoluminescence used for testing 5.12. Cathodoluminescence used for testing 5.13. Hamamatsu Photonics’ PL testing 5.13. Hamamatsu Photonics’ PL testing 5.14. Trends of testing 5.14. Trends of testing 6. DEFECT MANAGEMENT 6. DEFECT MANAGEMENT 6.1. Introduction 6.1. Introduction 6.2. Defect types 6.2. Defect types 6.3. Redundancy 6.3. Redundancy 6.4. Repair 1 6.4. Repair 1 6.5. Repair 2 6.5. Repair 2 6.6. Laser micro trimming 1 6.6. Laser micro trimming 1 6.7. Laser micro trimming 2 6.7. Laser micro trimming 2 6.8. PlayNitride’s SMAR Tech 6.8. PlayNitride’s SMAR Tech 6.9. Defect compensation by QDs 6.9. Defect compensation by QDs 7. MICRO-LED DISPLAY FULL-COLOUR REALIZATION 7. MICRO-LED DISPLAY FULL-COLOUR REALIZATION 7.1.1. Strategies for full colour realization 7.1.1. Strategies for full colour realization 7.1.2. Direct RGB or color converters? 7.1.2. Direct RGB or color converters? 7.1.3. RGB micro-LEDs vs. blue micro-LED + QD 1 7.1.3. RGB micro-LEDs vs. blue micro-LED + QD 1 7.1.4. RGB micro-LEDs vs. blue micro-LED + QD 2 7.1.4. RGB micro-LEDs vs. blue micro-LED + QD 2 7.2. Colour filters 7.2. Colour filters 7.2.1. Colour filters 7.2.1. Colour filters 7.2.2. Colour filter process flow: black matrix process 7.2.2. Colour filter process flow: black matrix process 7.2.3. Colour filter process flow: RGB process 1 7.2.3. Colour filter process flow: RGB process 1 7.2.4. Colour filter process flow: RGB process 2 7.2.4. Colour filter process flow: RGB process 2 7.3. Optical lens synthesis 7.3. Optical lens synthesis 7.3.1. Full colour realized by optical lens synthesis 7.3.1. Full colour realized by optical lens synthesis 7.3.2. Full colour realization for projectors 7.3.2. Full colour realization for projectors 7.4. Do phosphors work for micro-LED displays? 7.4. Do phosphors work for micro-LED displays? 7.4.1. Introduction to phosphors 1 7.4.1. Introduction to phosphors 1 7.4.2. Introduction to phosphors 2 7.4.2. Introduction to phosphors 2 7.4.3. Requirements for phosphors in LEDs 7.4.3. Requirements for phosphors in LEDs 7.4.4. Table of phosphor materials 7.4.4. Table of phosphor materials 7.4.5. Search for narrow FWHM red phosphors 7.4.5. Search for narrow FWHM red phosphors 7.4.6. Common and emerging red-emitting phosphors 7.4.6. Common and emerging red-emitting phosphors 7.4.7. Red phosphor options: TriGainTM from GE 7.4.7. Red phosphor options: TriGainTM from GE 7.4.8. Reliability of TriGain 7.4.8. Reliability of TriGain 7.4.9. Commercial progress of GE’s narrowband red phosphor 7.4.9. Commercial progress of GE’s narrowband red phosphor 7.4.10. Small sized PFS phosphor 7.4.10. Small sized PFS phosphor 7.4.11. Red phosphor options: Sr[LiAl3N4]:Eu2+ (SLA) red phosphor 7.4.11. Red phosphor options: Sr[LiAl3N4]:Eu2+ (SLA) red phosphor 7.4.12. Thermal stability of common RGY phosphors 7.4.12. Thermal stability of common RGY phosphors 7.4.13. Narrow band green phosphor 7.4.13. Narrow band green phosphor 7.4.14. High performance organic phosphors 7.4.14. High performance organic phosphors 7.4.15. Toray’s organic colour conversion film 7.4.15. Toray’s organic colour conversion film 7.4.16. Colour coverage of Toray’s colour conversion films 7.4.16. Colour coverage of Toray’s colour conversion films 7.4.17. Stability of Toray’s colour conversion films 7.4.17. Stability of Toray’s colour conversion films 7.4.18. Response time feature of Toray’s colour conversion films 7.4.18. Response time feature of Toray’s colour conversion films 7.4.19. Suppliers of phosphors 7.4.19. Suppliers of phosphors 7.5. Quantum dot approach 7.5. Quantum dot approach 7.5.1. Introduction to quantum dots 7.5.1. Introduction to quantum dots 7.5.2. Value propositions of QDs in displays 7.5.2. Value propositions of QDs in displays 7.5.3. Quantum dots used for micro-LED displays 7.5.3. Quantum dots used for micro-LED displays 7.5.4. QDs vs. phosphors: particle size 7.5.4. QDs vs. phosphors: particle size 7.5.5. QDs vs. phosphors: response time 7.5.5. QDs vs. phosphors: response time 7.5.6. QDs vs. phosphors: colour tunability 7.5.6. QDs vs. phosphors: colour tunability 7.5.7. QDs vs. phosphors: stability 7.5.7. QDs vs. phosphors: stability 7.5.8. QDs vs. phosphors: FWHM 7.5.8. QDs vs. phosphors: FWHM 7.5.9. Pros and cons of QD converters 7.5.9. Pros and cons of QD converters 7.5.10. Basic requirements of QDs for micro-LED displays 7.5.10. Basic requirements of QDs for micro-LED displays 7.5.11. Trade-off between efficiency and leakage 7.5.11. Trade-off between efficiency and leakage 7.5.12. Efficiency drop and red shift 7.5.12. Efficiency drop and red shift 7.5.13. Thickness of the QD layer for absorption 7.5.13. Thickness of the QD layer for absorption 7.5.14. Display structure with QDs 7.5.14. Display structure with QDs 7.5.15. Polarizers, short-pass filters, and other additional layers? 7.5.15. Polarizers, short-pass filters, and other additional layers? 7.5.16. High blue absorptive QD materials 7.5.16. High blue absorptive QD materials 7.5.17. QD converters for µLED displays 7.5.17. QD converters for µLED displays 7.5.18. Inkjet printing used for colour filters 7.5.18. Inkjet printing used for colour filters 7.5.19. Ink-jet printed QD colour converters 7.5.19. Ink-jet printed QD colour converters 7.5.20. Curing methods 7.5.20. Curing methods 7.5.21. Inkjet printed QD 1 7.5.21. Inkjet printed QD 1 7.5.22. Inkjet printed QD 2 7.5.22. Inkjet printed QD 2 7.5.23. DIC’s work 1 7.5.23. DIC’s work 1 7.5.24. DIC’s work 2 7.5.24. DIC’s work 2 7.5.25. Photolithography process 7.5.25. Photolithography process 7.5.26. QD photoresist fabrication 7.5.26. QD photoresist fabrication 7.5.27. Photoresist approach 7.5.27. Photoresist approach 7.5.28. Successive patterning of red and green QD of various sizes 7.5.28. Successive patterning of red and green QD of various sizes 7.5.29. QD photoresist 7.5.29. QD photoresist 7.5.30. Quantum-dots colour conversion layer 7.5.30. Quantum-dots colour conversion layer 7.5.31. Full-colour emission of quantum-dot-based micro LED display by aerosol jet technology 7.5.31. Full-colour emission of quantum-dot-based micro LED display by aerosol jet technology 7.5.32. Electrohydrodynamic jet printing 1 7.5.32. Electrohydrodynamic jet printing 1 7.5.33. Electrohydrodynamic jet printing 2 7.5.33. Electrohydrodynamic jet printing 2 7.5.34. Taiwan Nanocrystals: photo-patternable QDs for µLED displays 1 7.5.34. Taiwan Nanocrystals: photo-patternable QDs for µLED displays 1 7.5.35. Taiwan Nanocrystals: photo-patternable QDs for µLED displays 2 7.5.35. Taiwan Nanocrystals: photo-patternable QDs for µLED displays 2 7.5.36. Taiwan Nanocrystals: photo-patternable QDs for µLED displays 3 7.5.36. Taiwan Nanocrystals: photo-patternable QDs for µLED displays 3 7.5.37. Taiwan Nanocrystals: photo-patternable QDs for µLED displays 4 7.5.37. Taiwan Nanocrystals: photo-patternable QDs for µLED displays 4 7.5.38. Taiwan Nanocrystals: photo-patternable QDs for µLED displays 5 7.5.38. Taiwan Nanocrystals: photo-patternable QDs for µLED displays 5 7.5.39. Taiwan Nanocrystals: photo-patternable QDs for µLED displays 6 7.5.39. Taiwan Nanocrystals: photo-patternable QDs for µLED displays 6 7.6. Quantum well approach 7.6. Quantum well approach 7.6.1. Quantum wells 7.6.1. Quantum wells 7.6.2. Conclusions 7.6.2. Conclusions 8. LIGHT MANAGEMENT 8. LIGHT MANAGEMENT 8.1. Light management approach summary 8.1. Light management approach summary 8.2. Layers to optimize current distribution for better light extraction 8.2. Layers to optimize current distribution for better light extraction 8.3. InfiniLED’s approach to increase light extraction efficiency 1 8.3. InfiniLED’s approach to increase light extraction efficiency 1 8.4. InfiniLED’s approach to increase light extraction efficiency 2 8.4. InfiniLED’s approach to increase light extraction efficiency 2 8.5. Methods to capture light output 8.5. Methods to capture light output 8.6. Micro-catadioptric optical array for better directionality 8.6. Micro-catadioptric optical array for better directionality 9. BACKPLANES AND DRIVING 9. BACKPLANES AND DRIVING 9.1. Backplane and driving options for Micro-LED displays 9.1. Backplane and driving options for Micro-LED displays 9.2. Introduction to metal oxide semiconductor field-effect transistors 9.2. Introduction to metal oxide semiconductor field-effect transistors 9.3. Introduction to thin film transistors 9.3. Introduction to thin film transistors 9.4. Introduction to complementary metal oxide semiconductor 9.4. Introduction to complementary metal oxide semiconductor 9.5. Introduction to backplane 9.5. Introduction to backplane 9.6. TFT materials 9.6. TFT materials 9.7. Pixel driving for OLED 9.7. Pixel driving for OLED 9.8. LCD pixel structure 9.8. LCD pixel structure 9.9. TFT backplane 9.9. TFT backplane 9.10. Passive matrix addressing 9.10. Passive matrix addressing 9.11. Passive driving structure 9.11. Passive driving structure 9.12. Active matrix addressing 9.12. Active matrix addressing 9.13. Comparison between PM and AM addressing 9.13. Comparison between PM and AM addressing 9.14. Transistor-micro-LED connection design 9.14. Transistor-micro-LED connection design 9.15. Driving for micro-LEDs 9.15. Driving for micro-LEDs 9.16. Pulse width modulation 9.16. Pulse width modulation 9.17. PAM vs. PWM 9.17. PAM vs. PWM 9.18. Driving voltage 9.18. Driving voltage 9.19. Driving vs. EQE 9.19. Driving vs. EQE 9.20. RGB driver 9.20. RGB driver 9.21. Active matrix micro-LEDs with LTPS TFT backplane 9.21. Active matrix micro-LEDs with LTPS TFT backplane 9.22. Conclusion 9.22. Conclusion 10. IMAGE QUALITY IMPROVEMENT, POWER CONSUMPTION REDUCTION AND OTHER DESIGNS 10. IMAGE QUALITY IMPROVEMENT, POWER CONSUMPTION REDUCTION AND OTHER DESIGNS 10.1. Image Quality Improvement 10.1. Image Quality Improvement 10.1.1. TFT-based image uniformity issues 10.1.1. TFT-based image uniformity issues 10.1.2. LED binning 10.1.2. LED binning 10.1.3. Drive design 10.1.3. Drive design 10.1.4. Optical compensation 10.1.4. Optical compensation 10.1.5. Drive compensation 10.1.5. Drive compensation 10.2. Power Consumption Reduction 10.2. Power Consumption Reduction 10.2.1. LED and TFT 10.2.1. LED and TFT 10.2.2. Drive mode optimization 10.2.2. Drive mode optimization 10.2.3. Backplane optimization 10.2.3. Backplane optimization 11. MINI-LED DISPLAYS 11. MINI-LED DISPLAYS 11.1. Mini-LED display configurations 11.1. Mini-LED display configurations 11.2. What kind of role is mini-LED playing? 11.2. What kind of role is mini-LED playing? 11.3. MiniLEDs, real hope for 2021 onward? 11.3. MiniLEDs, real hope for 2021 onward? 11.4. Trends of Mini-LED displays 11.4. Trends of Mini-LED displays 12. COST ANALYSIS 12. COST ANALYSIS 12.1. Cost basics 12.1. Cost basics 12.2. Micro-LED cost vs. Die size 12.2. Micro-LED cost vs. Die size 12.3. Cost assumption 12.3. Cost assumption 12.4. Cost analysis 12.4. Cost analysis 12.5. Economics of micro-LED: cost down paths 12.5. Economics of micro-LED: cost down paths 13. MARKET ANALYSIS 13. MARKET ANALYSIS 13.1. Forecast approaches and assumptions 13.1. Forecast approaches and assumptions 13.2. Market forecast of shipment unit 13.2. Market forecast of shipment unit 13.3. 2026 & 2031 application market share 13.3. 2026 & 2031 application market share 13.4. Market forecast analysis 13.4. Market forecast analysis 13.5. Wafer value forecast 13.5. Wafer value forecast 14. PARTNERSHIPS, MERGES, ACQUISITIONS AND JOINT VENTURE 14. PARTNERSHIPS, MERGES, ACQUISITIONS AND JOINT VENTURE 14.1. Display cycle 14.1. Display cycle 14.2. Benefits 14.2. Benefits 14.3. Epistar & Leyard 14.3. Epistar & Leyard 14.4. PlayNitride & RIT Display 14.4. PlayNitride & RIT Display 14.5. Konka & Chongqing Liangshan Industrial Investment, Konka & LianTronics 14.5. Konka & Chongqing Liangshan Industrial Investment, Konka & LianTronics 14.6. BOE & Rohinni 14.6. BOE & Rohinni 14.7. Lextar & X Display 14.7. Lextar & X Display 14.8. JDI & glō, Kyocera & glō 14.8. JDI & glō, Kyocera & glō 14.9. Seoul Semiconductors & Viosys 14.9. Seoul Semiconductors & Viosys 14.10. Kulicke & Soffa and Uniqarta 14.10. Kulicke & Soffa and Uniqarta 15. PLAYERS AND CASE STUDIES 15. PLAYERS AND CASE STUDIES 15.1.1. Players discussed in this report 15.1.1. Players discussed in this report 15.2. Aledia 15.2. Aledia 15.2.1. Aledia: introduction 15.2.1. Aledia: introduction 15.2.2. Scalability to larger silicon substrate 15.2.2. Scalability to larger silicon substrate 15.2.3. Aledia’s quasi-fabless business model 15.2.3. Aledia’s quasi-fabless business model 15.2.4. Integration process of Aledia’s WireLED display 15.2.4. Integration process of Aledia’s WireLED display 15.2.5. Wafer uniformity of nanowires 15.2.5. Wafer uniformity of nanowires 15.2.6. Colour conversion of WireLEDs 15.2.6. Colour conversion of WireLEDs 15.2.7. Interconnection options 15.2.7. Interconnection options 15.2.8. Aledia’s display modules 15.2.8. Aledia’s display modules 15.3. ALLOS Semiconductors 15.3. ALLOS Semiconductors 15.3.1. ALLOS Semiconductors: introduction 15.3.1. ALLOS Semiconductors: introduction 15.3.2. Strain management and emission uniformity 1 15.3.2. Strain management and emission uniformity 1 15.3.3. Strain management and emission uniformity 2 15.3.3. Strain management and emission uniformity 2 15.3.4. Strain management 15.3.4. Strain management 15.3.5. Aoto Electronics 15.3.5. Aoto Electronics 15.4. Apple 15.4. Apple 15.4.1. Apple 15.4.1. Apple 15.4.2. Apple’s new Micro-LED chiplet architecture 1 15.4.2. Apple’s new Micro-LED chiplet architecture 1 15.4.3. Apple’s new Micro-LED chiplet architecture 2 15.4.3. Apple’s new Micro-LED chiplet architecture 2 15.4.4. AU Optronics 15.4.4. AU Optronics 15.5. AU Optronics 15.5. AU Optronics 15.5.1. AUO’s LTPS TFT driven micro-LED display 1 15.5.1. AUO’s LTPS TFT driven micro-LED display 1 15.5.2. AUO’s LTPS TFT driven micro-LED display 2 15.5.2. AUO’s LTPS TFT driven micro-LED display 2 15.6. BOE 15.6. BOE 15.6.1. Speeding up towards mini- and micro-LED displays 15.6.1. Speeding up towards mini- and micro-LED displays 15.6.2. BOE mini LED Backlight 15.6.2. BOE mini LED Backlight 15.6.3. BOE Mini LED Display 15.6.3. BOE Mini LED Display 15.7. CEA-Leti 15.7. CEA-Leti 15.7.1. CEA-Leti: introduction 15.7.1. CEA-Leti: introduction 15.7.2. Demos by hybridization technology 15.7.2. Demos by hybridization technology 15.7.3. Display performance 15.7.3. Display performance 15.7.4. Process of fabricating hybridization micro-displays 15.7.4. Process of fabricating hybridization micro-displays 15.7.5. Process of fabricating monolithic micro-displays 15.7.5. Process of fabricating monolithic micro-displays 15.7.6. Novel approach for monolithic display fabrication 15.7.6. Novel approach for monolithic display fabrication 15.8. Chengdu Vistar Optoelectronics 15.8. Chengdu Vistar Optoelectronics 15.8.1. Chengdu Vistar Optoelectronics 15.8.1. Chengdu Vistar Optoelectronics 15.9. EpiPix 15.9. EpiPix 15.9.1. Introduction of EpiPix 15.9.1. Introduction of EpiPix 15.9.2. EpiPix’s technique 15.9.2. EpiPix’s technique 15.10. glō 15.10. glō 15.10.1. Introduction of glō 15.10.1. Introduction of glō 15.10.2. Glō’s technology 15.10.2. Glō’s technology 15.10.3. Glō’s prototypes 15.10.3. Glō’s prototypes 15.11. ITRI 15.11. ITRI 15.11.1. ITRI development of micro-LEDs 15.11.1. ITRI development of micro-LEDs 15.11.2. ITRI’s progress 15.11.2. ITRI’s progress 15.11.3. ITRI’s offering 15.11.3. ITRI’s offering 15.11.4. Micro-LED device characteristics 15.11.4. Micro-LED device characteristics 15.11.5. Reliability test 15.11.5. Reliability test 15.11.6. ITRI’s MicroLED displays 15.11.6. ITRI’s MicroLED displays 15.11.7. ITRI’s transparent MicroLED displays 15.11.7. ITRI’s transparent MicroLED displays 15.11.8. ITRI 15.11.8. ITRI 15.12. Jade Bird Display 15.12. Jade Bird Display 15.12.1. Jade Bird Display: introduction 15.12.1. Jade Bird Display: introduction 15.12.2. Existing hybrid integration technology by flip chip technique 15.12.2. Existing hybrid integration technology by flip chip technique 15.12.3. Device fabrication 1 15.12.3. Device fabrication 1 15.12.4. Device fabrication 2 15.12.4. Device fabrication 2 15.12.5. Device structure and architecture 15.12.5. Device structure and architecture 15.12.6. micro-LEDs for the JBD’s micro-displays 15.12.6. micro-LEDs for the JBD’s micro-displays 15.12.7. JBD’s monochromatic AM micro-LED micro-displays 15.12.7. JBD’s monochromatic AM micro-LED micro-displays 15.12.8. AM micro-LED with directional emission 15.12.8. AM micro-LED with directional emission 15.12.9. Application: 3 colour LED projector 15.12.9. Application: 3 colour LED projector 15.12.10. High PPI AM micro-LED micro-display 15.12.10. High PPI AM micro-LED micro-display 15.12.11. AM micro-LED chips 15.12.11. AM micro-LED chips 15.12.12. Prototype for AR/VR 15.12.12. Prototype for AR/VR 15.13. Japan Display Inc. (JDI) 15.13. Japan Display Inc. (JDI) 15.13.1. JDI’s prototype 15.13.1. JDI’s prototype 15.14. Konka 15.14. Konka 15.14.1. Konka’s efforts on Micro-LED displays 15.14.1. Konka’s efforts on Micro-LED displays 15.14.2. Konka’s smart watch 15.14.2. Konka’s smart watch 15.15. Kyocera 15.15. Kyocera 15.15.1. Kyocera: high PPI micro-LED display 15.15.1. Kyocera: high PPI micro-LED display 15.15.2. Kyocera: display design 15.15.2. Kyocera: display design 15.16. LG 15.16. LG 15.16.1. Micro LED Signage 15.16.1. Micro LED Signage 15.17. Lumens 15.17. Lumens 15.17.1. Lumens’ micro-LED displays 15.17.1. Lumens’ micro-LED displays 15.17.2. Lumen’s prototypes 15.17.2. Lumen’s prototypes 15.18. Lumiode 15.18. Lumiode 15.18.1. Lumiode: introduction 15.18.1. Lumiode: introduction 15.18.2. Lumiode approach, process details 15.18.2. Lumiode approach, process details 15.18.3. Lumiode’s micro-LED performance 15.18.3. Lumiode’s micro-LED performance 15.18.4. Lumiode’s device performance 15.18.4. Lumiode’s device performance 15.19. Micro Nitride 15.19. Micro Nitride 15.19.1. Micro Nitride: Introduction 15.19.1. Micro Nitride: Introduction 15.19.2. Micro Nitride’s technology 1 15.19.2. Micro Nitride’s technology 1 15.19.3. Micro Nitride’s technology 2 15.19.3. Micro Nitride’s technology 2 15.20. Mikro Mesa 15.20. Mikro Mesa 15.20.1. About Mikro Mesa 15.20.1. About Mikro Mesa 15.20.2. Mikro Mesa’s micro-LEDs 15.20.2. Mikro Mesa’s micro-LEDs 15.20.3. Mikro Mesa: Current injection 15.20.3. Mikro Mesa: Current injection 15.21. Nanjing CEC Panda FPD Technology 15.21. Nanjing CEC Panda FPD Technology 15.21.1. Introduction of CEC Panda 15.21.1. Introduction of CEC Panda 15.21.2. Micro-LED and oxide development of Panda 15.21.2. Micro-LED and oxide development of Panda 15.22. Plessey 15.22. Plessey 15.22.1. Plessey: GaN-on-Silicon 15.22.1. Plessey: GaN-on-Silicon 15.22.2. Plessey’s display development roadmap 15.22.2. Plessey’s display development roadmap 15.22.3. LED manufacturing 15.22.3. LED manufacturing 15.22.4. Pixel development 15.22.4. Pixel development 15.22.5. RGB GaN on silicon 15.22.5. RGB GaN on silicon 15.22.6. Plessey’s core development 15.22.6. Plessey’s core development 15.22.7. Prototype 15.22.7. Prototype 15.23. PlayNitride 15.23. PlayNitride 15.23.1. PlayNitride: Introduction 15.23.1. PlayNitride: Introduction 15.23.2. Role of PlayNitride at micro-LED ecosystem 15.23.2. Role of PlayNitride at micro-LED ecosystem 15.23.3. PlayNitride timeline 15.23.3. PlayNitride timeline 15.23.4. PlayNitride’s application market 15.23.4. PlayNitride’s application market 15.23.5. PixeLED display structure 15.23.5. PixeLED display structure 15.23.6. PixeLED MatrixTM tiling display technology 15.23.6. PixeLED MatrixTM tiling display technology 15.23.7. PlayNitride: Prototypes 1 15.23.7. PlayNitride: Prototypes 1 15.23.8. PlayNitride : Prototypes 2 15.23.8. PlayNitride : Prototypes 2 15.23.9. PlayNitride : Prototypes 3 15.23.9. PlayNitride : Prototypes 3 15.23.10. PlayNitride: Prototypes 4 15.23.10. PlayNitride: Prototypes 4 15.23.11. PlayNitride: Prototypes 5 15.23.11. PlayNitride: Prototypes 5 15.24. Rohinni 15.24. Rohinni 15.24.1. Introduction of Rohinni 15.24.1. Introduction of Rohinni 15.24.2. Technology 15.24.2. Technology 15.24.3. Product benefits example 15.24.3. Product benefits example 15.25. Samsung 15.25. Samsung 15.25.1. Samsung left LCD business 15.25.1. Samsung left LCD business 15.25.2. The Wall vs. The Window 15.25.2. The Wall vs. The Window 15.25.3. LED Cinema Screen 15.25.3. LED Cinema Screen 15.25.4. Samsung’s MicroLED Home Screen at CES 2021 15.25.4. Samsung’s MicroLED Home Screen at CES 2021 15.25.5. Samsung’s QNED 15.25.5. Samsung’s QNED 15.25.6. Price of Samsung TVs 15.25.6. Price of Samsung TVs 15.25.7. RGB one chip 15.25.7. RGB one chip 15.26. Saphlux 15.26. Saphlux 15.26.1. Saphlux: introduction 15.26.1. Saphlux: introduction 15.26.2. NPQD technology 15.26.2. NPQD technology 15.27. Sharp 15.27. Sharp 15.27.1. Sharp: introduction 15.27.1. Sharp: introduction 15.27.2. Process flow of Silicon Display 15.27.2. Process flow of Silicon Display 15.27.3. Display driver 15.27.3. Display driver 15.27.4. Monolithic micro-LED array 15.27.4. Monolithic micro-LED array 15.27.5. Full colour realization 15.27.5. Full colour realization 15.27.6. Prototypes made by Sharp 15.27.6. Prototypes made by Sharp 15.27.7. New spin-off 15.27.7. New spin-off 15.28. Sony 15.28. Sony 15.28.1. Sony: initial efforts 15.28.1. Sony: initial efforts 15.28.2. Sony: scalable display system 15.28.2. Sony: scalable display system 15.28.3. Sony: precise tiling 1 15.28.3. Sony: precise tiling 1 15.28.4. Sony: precise tiling 2 15.28.4. Sony: precise tiling 2 15.28.5. Sony: micro-LEDs 15.28.5. Sony: micro-LEDs 15.28.6. Sony: viewing angle advantages 15.28.6. Sony: viewing angle advantages 15.28.7. Sony: active matrix driving with micro IC 15.28.7. Sony: active matrix driving with micro IC 15.28.8. Sony: HDR reproducibility 15.28.8. Sony: HDR reproducibility 15.28.9. Sony: business strategy 15.28.9. Sony: business strategy 15.29. Stan (Shenzhen) Technology 15.29. Stan (Shenzhen) Technology 15.29.1. Stan Technology 15.29.1. Stan Technology 15.30. TCL/CSOT 15.30. TCL/CSOT 15.30.1. The Cinema Wall 15.30.1. The Cinema Wall 15.30.2. TFT backplane-based micro-LED displays 15.30.2. TFT backplane-based micro-LED displays 15.30.3. TCL CSOT Mini LED roadmap 15.30.3. TCL CSOT Mini LED roadmap 15.31. Visionox 15.31. Visionox 15.31.1. Visionox’s planning 15.31.1. Visionox’s planning 15.32. VueReal 15.32. VueReal 15.33. VueReal: introduction 15.33. VueReal: introduction 15.34. VueReal: high efficient micro-LEDs 15.34. VueReal: high efficient micro-LEDs 15.35. VueReal: Inspection 15.35. VueReal: Inspection 15.36. VueReal: curing 15.36. VueReal: curing 15.37. VueReal: prototypes 15.37. VueReal: prototypes 16. APPENDIX 16. APPENDIX 16.1. Colours and pixels 16.1. Colours and pixels 16.2. What is resolution? 16.2. What is resolution? 16.3. Pixel pitch and fill factor 16.3. Pixel pitch and fill factor 16.4. EQE and IQE 16.4. EQE and IQE 16.5. 3D colour volume 16.5. 3D colour volume 16.6. LCD panel structure 16.6. LCD panel structure 16.7. Active matrix-LCD structure 16.7. Active matrix-LCD structure

Laisser un commentaire